Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bis(hinokitiolato)copper(II): modification (III)

Douglas M. Ho

Department of Chemistry, Princeton University, Princeton, NJ 08544-1009, USA Correspondence e-mail: doug32009@gmail.com

Received 31 March 2010
Accepted 27 April 2010
Online 8 May 2010
Bis(hinokitiolato)copper(II), Cu (hino) $)_{2}$, exhibits both antibacterial and antiviral properties, and has been previously shown to exist in two modifications. A third modification has now been confirmed, namely tetrakis ($\mu_{2}-3$-isopropyl-7-oxocyclohepta-1,3,5-trien-1-olato)bis(3-isopropyl-7-oxocyclo-hepta-1,3,5-trien-1-olato)tricopper(II)-bis(μ_{2}-3-isopropyl-7-oxo-cyclohepta-1,3,5-trien-1-olato)bis[(3-isopropyl-7-oxocyclo-hepta-1,3,5-trien-1-olato)copper(II)] (1/1), $\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{2}\right]_{3} \cdot-$ $\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{2}\right]_{2}$, where 3-isopropyl-7-oxocyclohepta-1,3,5-trien-1-olate is the systematic name for the hinokitiolate anion. This new modification is composed of discrete [cis$\left.\mathrm{Cu}(\text { hino })_{2}\right]_{2}\left[\right.$ trans $\left.-\mathrm{Cu}(\text { hino })_{2}\right]$ trimers and $\left[\text { cis }-\mathrm{Cu}(\text { hino })_{2}\right]_{2}$ dimers. The Cu atoms are bridged by $\mu_{2}-\mathrm{O}$ atoms from the hinokitiolate ligands to give distorted square-pyramidal and distorted octahedral $\mathrm{Cu}^{\mathrm{II}}$ coordination environments. Hence, the $\mathrm{Cu}^{\text {II }}$ environments are $\mathrm{CuO}_{5} / \mathrm{CuO}_{6} / \mathrm{CuO}_{5}$ for the trimer and $\mathrm{CuO}_{5} / \mathrm{CuO}_{5}$ for the dimer. Each trimer and dimer has crystallographically imposed inversion symmetry. The trimer has never been observed before, the dimer has been seen only once before, and the combination of the two together in the same lattice is unprecedented. The CuO_{5} cores exhibit four strong basal $\mathrm{Cu}-\mathrm{O}$ bonds $[1.915$ (2)-1.931 (2) \AA] and one weak apical $\mathrm{Cu}-\mathrm{O}$ bond $\left[2.652\right.$ (2)-2.658 (2) \AA A . The CuO_{6} core exhibits four strong equatorial $\mathrm{Cu}-\mathrm{O}$ bonds [1.922 (2)1.929 (2) Å] and two very weak axial $\mathrm{Cu}-\mathrm{O}$ bonds [2.911 (3) A]. The bite angles for the chelating hinokitiolate ligands range from 83.13 (11) to $83.90(10)^{\circ}$.

Comment

Hinokitiol (β-thujaplicin) and metal complexes of the hinokitiolate anion have been known for 74 years (Nozoe, 1936). The former is a natural product and of interest for its broad range of biological activities, e.g. antitumor, antibacterial, antifungal and insecticidal properties (Inamori et al., 1993, 2000; Arima et al., 2003; Morita et al., 2003), while the latter metal complexes exhibit antiviral and antimicrobial properties (Miyamoto et al., 1998; Nomiya et al., 2009). Among these compounds, the Cu complex reported by Nozoe in 1936 is arguably the most structurally intriguing. In 2002, initial
insights into the 'unusual structural chemistry of $\mathrm{Cu}^{\mathrm{II}}$ hinokitiol' [also referred to as bis(hinokitiolato)copper(II) or Cu (hino) ${ }_{2}$] were provided by Molloy and co-workers, who found that Cu (hino) $)_{2}$ could be crystallized in two modifications (Barret et al., 2002). Modification (I) turned out to be monomeric trans- Cu (hino) $)_{2}$, while modification (II) is composed of monomers and dimers, i.e. $\left[\text { cis }-\mathrm{Cu}(\text { hino })_{2}\right]_{2} \cdot-$ $\left[\text { trans }-\mathrm{Cu}(\text { hino })_{2}\right]_{2} \cdot$ trans $-\mathrm{Cu}(\text { hino })_{2}$. Subsequent studies have further revealed that (I) is polymorphic (Barret et al., 2002; Nomiya et al., 2004; Arvanitis et al., 2004; Ho et al., 2009). A third modification, (III), has now been discovered and is reported here. This new modification is composed of dimers and trimers, i.e. $\left[\text { cis }-\mathrm{Cu}(\text { hino })_{2}\right]_{2}\left[\right.$ trans $\left.-\mathrm{Cu}(\text { hino })_{2}\right] \cdot[$ cis $-\mathrm{Cu}-$ (hino) $\left.)_{2}\right]_{2}$. Views of the trimer and dimer are given in Figs. 1 and 2 , respectively, and selected bond distances and bond valences are summarized in Table 1.

(I) $=$ trans $-\mathrm{Cu}(\text { hino })_{2}$

$($ II $)=\left[\text { cis }-\mathrm{Cu}(\text { hino })_{2}\right]_{2} \cdot\left[\text { trans }-\mathrm{Cu}(\text { hino })_{2}\right]_{2} \cdot$ trans $-\mathrm{Cu}(\text { hino })_{2}$

$($ III) $)=\left[\text { cis }-\mathrm{Cu}(\text { hino })_{2}\right]_{2}\left[\right.$ trans $\left.-\mathrm{Cu}(\text { hino })_{2}\right] \cdot\left[\text { cis }-\mathrm{Cu}(\text { hino })_{2}\right]_{2}$

Trimeric $\mathrm{Cu}^{\text {II }}$ hinokitiol has never been observed before and therefore constitutes the most notable feature of this study. As shown in Fig. 1, the trimer consists of a single planar trans -Cu (hino) $)_{2}$ moiety sandwiched between two visibly twisted cis- Cu (hino) $)_{2}$ moieties. Atom Cu 1 is situated at Wyckoff position $1 h$ [space group $P \overline{1}$ (No. 2)], requiring that the trimer possess crystallographic inversion symmetry. Atoms $\mathrm{Cu} 1, \mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 1^{\mathrm{i}}$ and $\mathrm{O} 2^{\mathrm{i}}$ are also required by symmetry to be exactly coplanar [symmetry code: (i) $-x+1,-y+1,-z+1$].

Figure 1
The cis,trans,cis trimer in modification (III). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) $-x+1,-y+1,-z+1$.]

In contrast, atoms $\mathrm{Cu} 2 / \mathrm{O} 3-\mathrm{O} 6$ in the nonplanar cis moieties exhibit displacements of -0.109 (1), 0.168 (1), -0.111 (1), -0.114 (1) and 0.166 (1) \AA, respectively, from the leastsquares plane defined by those atoms. The end-to-end distances for the $\mathrm{Cu}(\mathrm{hino})_{2}$ moieties (excluding the isopropyl groups) are 11.358 (7) and 11.274 (6) \AA for $\mathrm{C} 4 \cdots \mathrm{C} 4^{\mathrm{i}}$ and C14..C24, respectively. The shortening of the C14...C24 distance is consistent with the cis moieties being slightly bowed in addition to being twisted. Four of the six hinokitiolate ligands participate in asymmetric $\mu_{2}-\mathrm{O}$ bridges to yield the final trimeric structure, with atom Cu 1 having a distorted octahedral CuO_{6} coordination geometry and atom Cu 2 having a distorted CuO_{5} square-pyramidal coordination environment. The twisting and bowing of the cis moieties help to facilitate the bridge bonding, and to alleviate steric repulsions between the $\mathrm{C} 21-\mathrm{C} 27$ and $\mathrm{C} 21^{\mathrm{i}}-\mathrm{C} 27^{\mathrm{i}}$ cycloheptatriene rings and atoms H 8 and $\mathrm{H} 8^{\mathrm{i}}$ of the central trans moiety, respectively.

The dimeric $\mathrm{Cu}^{\text {II }}$ hinokitiol component in (III), while less novel than the cis,trans,cis trimer, is nevertheless also unusual, having been observed only once before, i.e. in modification (II). The cis,cis dimers in (II) and (III) are quite synonymous, but the Cu atoms in both dimers are probably better described as five-coordinate with square-pyramidal environments, rather than 'four-coordinate and in a square-planar environment' (Barret et al., 2002). In both (II) and (III), the cis,cis dimers possess crystallographically imposed inversion symmetry. For (III), the dimer is centered on Wyckoff position 1a, i.e. the mid-point between atoms Cu 3 and $\mathrm{Cu} 3{ }^{\mathrm{ii}}$ in Fig. 2 [symmetry code: (ii) $-x,-y,-z+2$]. Atom Cu 3 is 0.105 (1) \AA above the least-squares plane defined by atoms O7-O10 and displaced towards atom $\mathrm{O} 9^{\mathrm{ii}}$. The $\mathrm{C} 34 \cdots \mathrm{C} 44$ end-to-end distance is 11.166 (6) \AA, indicating that the cis moieties in the dimer are even more bowed than those in the trimer. In contrast, atom

Figure 2
The cis,cis dimer in modification (III). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (ii) $-x,-y,-z+2$.]

Cu 1 in (II) is coplanar with atoms O1-O4. The displacements from the least-squares plane defined by these five atoms are -0.103 (1), -0.088 (2), 0.145 (2), 0.141 (2) and -0.095 (2) Å, respectively. The cis moieties in (II) are, however, also bowed, with the C5 . C15 end-to-end distance being 11.176 (5) \AA. These observations are more consistent with CuO_{5} cores and covalent bonding, rather than CuO_{4} cores and a fifth axial intermolecular interaction.

A bond-valence analysis (Brown, 2002, 2009) of the CuO_{x} bonding in the cis,trans,cis trimer and cis,cis dimer is given in Table 1. The CuO_{6} values in (III) are compared with those for bis(tropolonato)copper(II), $\mathrm{Cu}(\text { trop })_{2}$, which is most often viewed as a square-planar CuO_{4} monomer (Robertson, 1951; Macintyre et al., 1966; Berg et al., 1978). The latter view has, however, been challenged by a subsequent claim that $\mathrm{Cu}(\text { trop })_{2}$ 'exists as a sandwich-type dimer' (Hasegawa et al., 1997); a claim reiterated in a recent review article (Vigato et al., 2009). Suffice to say that it is crystallographically impossible for discrete dimers to exist in that 1997 determination. $\mathrm{Cu}(\text { trop })_{2}$ is either a solid-state monomer or, as entertained below, possibly a solid-state polymer with CuO_{6} bonding. Finally, the CuO_{5} values for (III) are compared with those for (II). For completeness, the trans,trans dimer values for (II) are also provided.

The CuO_{6} equatorial bonds in the trans moiety of the trimer are in the range 1.922 (2) -1.929 (2) \AA and are noticably longer than the range of 1.900 (2)-1.918 (2) \AA observed in the transCu (hino) $)_{2}$ monomer, (I). This lengthening of the $\mathrm{Cu}-\mathrm{O}$ bonds is consistent with oligomerization; the $\mathrm{Cu}-\mathrm{O}$ bonds in the trans,trans dimer in (II) also experience a similar lengthening [1.915 (2)-1.939 (2) \AA]. The CuO_{6} axial bonds in (III) are long at 2.911 (3) \AA, while those in $\mathrm{Cu}(\text { trop })_{2}$ are even longer at 3.144 (2) A. The comparable literature values for CuO_{6} equatorial and axial bonds are 1.908 (2)-1.948 (6) and 2.797 (2)-2.948 (2) A, respectively (Table 2). The CuO_{6} average bond valence, bond-valence sum, s / s^{\prime} and distortion index ΔR are $0.355,2.128,0.101-1.462$ and 0.191 , respectively,
for (III), and $0.358,2.150,0.053-1.475$ and 0.266 , respectively, for $\mathrm{Cu}(\text { trop })_{2}$, while the literature s / s^{\prime} and ΔR values are $0.07-$ 1.50 and 0.048-0.146, respectively, for Jahn-Teller-distorted CuO_{6} octahedra (Brown, 2006). All of the numerical values for (III) are in excellent agreement with the presence of a Jahn-Teller-elongated CuO_{6} octahedron. $\mathrm{Cu}(\text { trop })_{2}$, on the other hand, is at or beyond the limits of such a description. While axial bonds beyond $3 \AA$ do potentially exist (see Table 2), $\mathrm{Cu}(\text { trop })_{2}$ is probably better described as a squareplanar CuO_{4} monomer.

The CuO_{5} basal bonds in the cis moieties in both the trimer and dimer in (III) are in the range 1.915 (3)-1.931 (3) \AA and are comparable with the range of 1.919 (2)-1.933 (2) \AA observed in the cis,cis dimer in (II). The CuO_{5} apical bonds in (III) are 2.658 (3) and 2.652 (3) \AA for the trimer and dimer, respectively, but only 2.476 (2) \AA in the cis,cis dimer in (II). The comparable literature values for CuO_{5} basal and apical bonds are 1.898 (3)-1.962 (3) and 2.392 (3)-2.878 (3) A., respectively (Table 2). The CuO_{5} average bond valence, bondvalence sum, s / s^{\prime} and distortion index ΔR are $0.429,2.157$, $0.167-1.226$ and 0.077 , respectively, for (III), and $0.431,2.154$, $0.267-1.205$ and 0.048 , respectively, for (II). All of these values are in excellent agreement with the cis moieties in (III) having distorted CuO_{5} square-pyramidal coordination geometries.

The trimers form hydrogen-bonded ribbons in the solid state via the two interactions $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 5^{\mathrm{iii}}[\mathrm{C} 5-\mathrm{H} 5=$ $0.95 \AA, \mathrm{H} 5 \cdots \mathrm{O} 5^{\mathrm{iii}}=2.40 \AA, \mathrm{C} 5 \cdots \mathrm{O} 5^{\mathrm{iii}}=3.328$ (4) \AA and $\mathrm{C} 5-$ H5 $\cdots \mathrm{O} 5^{\mathrm{iii}}=165^{\circ}$; symmetry code: (iii) $\left.-x,-y+1,-z+1\right]$ and $\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 3^{\mathrm{iii}}\left[\mathrm{C} 6-\mathrm{H} 6=0.95 \AA\right.$, $\mathrm{H} 6 \cdots \mathrm{O} 3^{\mathrm{iii}}=2.43 \AA$, $\mathrm{C} 6 \cdots \mathrm{O}^{\mathrm{iii}}=3.302$ (4) \AA and $\left.\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 3^{\mathrm{iii}}=153^{\circ}\right]$. Chains of dimers are present, but there are no dimer-dimer hydrogenbonding, $\pi-\pi$ stacking or $\mathrm{Cu} \cdots \pi$ interactions involved. The closest dimer-dimer contact is $\mathrm{Cu} 3 \cdots \mathrm{C} 34^{\text {iv }}=3.399(4) \AA$ [symmetry code: (iv) $-x+1,-y,-z+2$]. Finally, the ribbons of trimers and chains of dimers are linked via the two interactions $\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{O}^{\mathrm{v}}\left[\mathrm{C} 24-\mathrm{H} 24=0.95 \AA, \mathrm{H} 24 \cdots \mathrm{O} 8^{\mathrm{v}}=\right.$ $2.52 \AA, \mathrm{C} 24 \cdots \mathrm{O}^{\mathrm{v}}=3.446(5) \AA$ and $\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{O}^{\mathrm{v}}=$ 164°; symmetry code: (v) $\left.x, y+1, z\right]$ and $\mathrm{C} 45-\mathrm{H} 45 \cdots \mathrm{O} 3$ $[\mathrm{C} 45-\mathrm{H} 45=0.95 \AA, \quad \mathrm{H} 45 \cdots \mathrm{O} 3=2.58 \AA, \mathrm{C} 45 \cdots \mathrm{O} 3=$ 3.397 (5) \AA, and $\mathrm{C} 45-\mathrm{H} 45 \cdots \mathrm{O} 3=145^{\circ}$].

In summary, structural details have been presented for a third modification of the bioactive substance $\mathrm{Cu}^{\mathrm{II}}$ hinokitiol. This new modification, (III), is $\left.[\text { cis- } \mathrm{Cu} \text { (hino })_{2}\right]_{2}[$ transCu (hino) $\left.\left.)_{2}\right] \cdot[\text { cis- } \mathrm{Cu} \text { (hino) })_{2}\right]_{2}$, containing a previously undocumented cis,trans,cis trimer. The results from a bond-valence analysis are consistent with the central $\mathrm{Cu}^{\mathrm{II}}$ atom having a Jahn-Teller-distorted octahedral environment. The 'unusual structural chemistry of $\mathrm{Cu}^{\mathrm{II}}$ hinokitiol' now encompasses six crystalline forms, i.e. modification (I) with four forms, (II) with one form and (III) with one form. The trans:cis ratios are 1:0, 3:2 and 1:4 for modifications (I)-(III), respectively, making (III) the most cis-enriched modification so far uncovered.

Experimental

Modification (III) was isolated from a mixture of assorted crystals of $\mathrm{Cu}(\text { hino })_{2}$, prepared as described by Arvanitis et al. (2004).

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{2}\right]_{3} \cdot\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{2}\right]_{2}$
$\gamma=88.897(2)^{\circ}$
$V=2268.50(11) \AA^{3}$
$Z=1$
Mo $K \alpha$ radiation
$\mu=1.22 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
$0.30 \times 0.15 \times 0.03 \mathrm{~mm}$

Data collection

Nonius KappaCCD area-detector diffractometer
Absorption correction: multi-scan (SCALEPACK; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.710, T_{\text {max }}=0.970$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.149$
$S=1.01$
10341 reflections

575 parameters

H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.10 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.61 \mathrm{e}^{\AA^{-3}}$

All H atoms were allowed to ride on their respective C atoms, with $\mathrm{C}-\mathrm{H}=0.95,1.00$ and $0.98 \AA$ for the cycloheptatriene, methine and methyl H atoms, respectively, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the cycloheptatriene and methine H atoms or $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for the methyl H atoms. Bond-valence parameters for Cu and O were taken from

Table 1
Selected bond distances (\AA) and bond valences (s).
The average bond valence s^{\prime} is defined as $(\Sigma s) / N$, where N corresponds to the coordination number (e.g. 5 or 6) for the Cu atom in question.

CuO_{x}	Bond	Length	s	s / s^{\prime}
CuO_{6}	Cu1-O1	1.929 (2)	0.509	1.434
In (III), trimer ${ }^{a}$	$\mathrm{Cu} 1-\mathrm{O} 2$	1.922 (2)	0.519	1.462
	$\mathrm{Cu} 1-\mathrm{O} 4$	2.911 (3)	0.036	0.101
CuO_{5}	$\mathrm{Cu} 2-\mathrm{O} 3$	1.918 (2)	0.524	1.221
In (III), trimer ${ }^{\text {a }}$	$\mathrm{Cu} 2-\mathrm{O} 4$	1.921 (3)	0.520	1.212
	$\mathrm{Cu} 2-\mathrm{O} 5$	1.917 (3)	0.526	1.226
	$\mathrm{Cu} 2-\mathrm{O} 6$	1.931 (2)	0.506	1.179
	$\mathrm{Cu} 2-\mathrm{O} 1^{\text {i }}$	2.658 (3)	0.071	0.166
CuO_{5}	Cu3-O7	1.915 (2)	0.528	1.225
In (III), dimer ${ }^{\text {a }}$	Cu3-O8	1.915 (3)	0.528	1.225
	Cu3-O9	1.931 (3)	0.506	1.174
	Cu3-O10	1.921 (3)	0.520	1.206
	$\mathrm{Cu} 3-\mathrm{O} 9{ }^{\text {ii }}$	2.652 (3)	0.072	0.167
CuO_{6}	$\mathrm{Cu} 1-\mathrm{O} 1$	1.915 (2)	0.528	1.475
In $\mathrm{Cu}(\text { (trop })_{2}{ }^{\text {b }}$		1.915 (3)	0.528	1.475
	$\mathrm{Cu} 1-\mathrm{O} 1^{\text {iv }}$	3.144 (2)	0.019	0.053
CuO_{5}	Cu1-O1	1.919 (2)	0.523	1.205
In (II), dimer ${ }^{\text {c }}$	$\mathrm{Cu} 1-\mathrm{O} 2$	1.920 (2)	0.521	1.200
	$\mathrm{Cu} 1-\mathrm{O} 3$	1.932 (2)	0.505	1.164
	Cu1-O4	1.933 (2)	0.503	1.159
	$\mathrm{Cu} 1-\mathrm{O}^{\text {vi }}$	2.476 (2)	0.116	0.267
CuO_{5}	$\mathrm{Cu} 2-\mathrm{O} 5$	1.915 (2)	0.528	1.219
In (II), dimer ${ }^{\text {d }}$	$\mathrm{Cu} 2-\mathrm{O} 6$	1.921 (2)	0.520	1.201
	Cu2-O7	1.939 (2)	0.495	1.143
	$\mathrm{Cu} 2-\mathrm{O} 8$	1.922 (2)	0.519	1.199
	$\mathrm{Cu} 2-\mathrm{O} 8^{\text {vii }}$	2.512 (2)	0.105	0.242

References: (a) this work; (b) Hasegawa et al. (1997) (trop is the tropolonate anion); (c) Barret et al. (2002) (cis,cis dimer); (d) Barret et al. (2002) (trans,trans dimer). Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y,-z+2$; (iv) $x, y, z-1$; (vi) $-x+1,-y,-z$; (vii) $-x+1,-y,-z+1$.

Table 2
$\mathrm{Cu}-\mathrm{O}$ bond lengths (\AA) in selected α - and β-diketonate and dicarboxylate complexes.

Complex	CuO_{x}	$\mathrm{Cu}-\mathrm{O}($ basal/equatorial)	$\mathrm{Cu}-\mathrm{O}$ (apical/axial)
$\left[\mathrm{Cu}_{2}(L 1)_{2}\right]^{2+}$	5	$1.910(3)-1.962(3)$	$2.878(3)$
$\left[\mathrm{Cu}_{2}(L 2)_{2}\right]^{2+}$	6	$1.921(4)-1.944(3)$	$3.001(4) \dagger$
$\mathrm{Cu}_{2}(L 3)_{4}$	5	$1.898(3)-1.933(3)$	$2.545(3) \ddagger$
$\mathrm{Cu}_{2}(L 4)_{4}$	5	$1.918(4)-1.955(4)$	$2.416(4)$
$\mathrm{Cu}_{4}(L 4)_{4}(\mathrm{OEt})_{4}$	5	$1.934(5)-1.952(4)$	$2.561(4)$
$\mathrm{Cu}_{4}(L 5)_{4}(\mathrm{OMe})_{4}$	5	$1.898(6)-1.923(5)$	$2.925(6) \dagger$
$\left[\mathrm{Cu}_{4}(L 6)_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{8-}$	6	$1.908(2)-1.940(2)$	$2.797(2)-2.948(2)$
$\left[\mathrm{Cu}_{n}(L 6)_{2 n}\right]^{2 n-}$	5	$1.912(9)-1.942(8)$	$2.798(3)$
$\mathrm{Cu}_{6}(L 7)_{6}(\mathrm{OMe})_{6}$	5	$1.918(6)-1.952(5)$	$2.843(7)$
	6	$1.923(6)-1.948(6)$	$3.019(7) \dagger$
$\mathrm{Cu}_{6}(L 8)_{6}(\mathrm{OMe})_{6}$	5	$1.915(2)-1.932(2)$	$2.392(2)-2.418(2)$
	6	$1.923(2)-1.927(2)$	$3.020(2) \dagger$

\dagger Potential apical or axial bonds. \ddagger The published value of 2.242 (3) \AA is a literature error. Notes: $L 1=1$-(2-\{4,10-dimethyl-7-[2-(3-oxido-2-oxo-1-pyridyl)acetyl]-1,7,10-tri-aza-4-azoniacyclododec-1-yl]-2-oxoethyl)-2-oxopyridin-3-olate (Ambrosi et al., 2005); $L 2=1-[2-($ methyl $\{2-[$ methyl $(2-\{$ methyl $[2-(3$-oxido-2-oxo-1-pyridyl)acetyl $]$ amino $\}$ ethyl $)$ -ammonio]ethyl]amino)-2-oxoethyl]-2-oxopyridin-3-olate (Ambrosi et al., 2005); L3 = o-vanillinate (Lin et al., 2006); $L 4=3,5$-di-tert-butyl-o-semiquinate (Thompson \& Calabrese, 1986; Bencini et al., 2003); L5 = 2,2,6,6-tetramethyl-3,5-heptanedionate (Watson \& Holley, 1984); L6 = oxalate (Kadir et al., 2006; Li et al., 2008); $L 7=4,4,4-$ trifluoro-1-(2-thienyl)butane-1,3-dionate (Olejnik et al., 1986); L8 = 3-cyanoacetylacetonate (Burrows et al., 2007).
bvparm2009.cif and the calculations made with the bond-valence calculator Valence 2.0 distributed by Brown (http://www.ccp14.ac.uk/ ccp/web-mirrors/i_d_brown).

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Version 2.02; Farrugia, 1997); software used to prepare material for publication: SHELXTL.

The author extends sincere thanks to Dr Susan K. Byram (Bruker AXS) for software support and Dr Judith C. Gallucci (The Ohio State University) for helpful discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: EG3045). Services for accessing these data are described at the back of the journal.

References

Ambrosi, G., Formica, M., Fusi, V., Giorgi, L., Guerri, A., Lucarini, S., Micheloni, M., Paoli, P., Rossi, P. \& Zappia, G. (2005). Inorg. Chem. 44, 3249-3260.

Arima, Y., Nakai, Y., Hayakawa, R. \& Nishino, T. (2003). J. Antimicrob. Chemother. 51, 113-122.
Arvanitis, G. M., Berardini, M. E. \& Ho, D. M. (2004). Acta Cryst. C60, m126m128.
Barret, M. C., Mahon, M. F., Molloy, K. C., Wright, P. \& Creeth, J. E. (2002). Polyhedron, 21, 1761-1766.
Bencini, A., Dei, A., Sangregorio, C., Totti, F. \& Vaz, M. G. F. (2003). Inorg. Chem. 42, 8065-8071.
Berg, J.-E., Pilotti, A.-M., Söderholm, A.-C. \& Karlsson, B. (1978). Acta Cryst. B34, 3071-3072.
Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.
Brown, I. D. (2006). Acta Cryst. B62, 692-694.
Brown, I. D. (2009). Chem. Rev. 109, 6858-6919.
Burrows, A. D., Cassar, K., Mahon, M. F. \& Warren, J. E. (2007). Dalton Trans. pp. 2499-2509.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hasegawa, M., Inomaki, Y., Inayoshi, T., Hoshi, T. \& Kobayashi, M. (1997). Inorg. Chim. Acta, 257, 259-264.
Ho, D. M., Berardini, M. E. \& Arvanitis, G. M. (2009). Acta Cryst. C65, m391m394.
Inamori, Y., Sakagami, Y., Morita, Y., Shibata, M., Sugiura, M., Kumeda, Y., Okabe, T., Tsujibo, H. \& Ishida, N. (2000). Biol. Pharm. Bull. 23, 995997.

Inamori, Y., Tsujibo, H., Ohishi, H., Ishii, F., Mizugaki, M., Aso, H. \& Ishida, N. (1993). Biol. Pharm. Bull. 16, 521-523.

Kadir, K., Mohammad Ahmed, T., Noreús, D. \& Eriksson, L. (2006). Acta Cryst. E62, m1139-m1141.
Li, W., Jia, H.-P., Ju, Z.-F. \& Zhang, J. (2008). Inorg. Chem. Commun. 11, 591594.

Lin, H., Su, H. \& Feng, Y.-L. (2006). Z. Kristallogr. New Cryst. Struct. 221, $173-$ 175.

Macintyre, W. M., Robertson, J. M. \& Zahrobsky, R. F. (1966). Proc. R. Soc. London Ser. A, 289, 161-170.
Miyamoto, D., Kusagaya, Y., Endo, N., Sometani, A., Takeo, S., Suzuki, T., Arima, Y., Nakajima, K. \& Suzuki, Y. (1998). Antiviral Res. 39, 89100.

Morita, Y., Matsumura, E., Okabe, T., Shibata, M., Sugiura, M., Ohe, T., Tsujibo, H., Ishida, N. \& Inamori, Y. (2003). Biol. Pharm. Bull. 26, 14871490.

Nomiya, K., Onodera, K., Tsukagoshi, K., Shimada, K., Yoshizawa, A., Itoyanagi, T., Sugie, A., Tsuruta, S., Sato, R. \& Kasuga, N. C. (2009). Inorg. Chim. Acta, 362, 43-55.
Nomiya, K., Yoshizawa, A., Kasuga, N. C., Yokoyama, H. \& Hirakawa, S. (2004). Inorg. Chim. Acta, 357, 1168-1176.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Nozoe, T. (1936). Bull. Chem. Soc. Jpn, 11, 295-298.
Olejnik, Z., Jeżowska-Trzebiatowska, B. \& Lis, T. (1986). J. Chem. Soc. Dalton Trans. pp. 97-101.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Robertson, J. M. (1951). J. Chem. Soc. pp. 1222-1229.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Thompson, J. S. \& Calabrese, J. C. (1986). J. Am. Chem. Soc. 108, 19031907.

Vigato, P. A., Peruzzo, V. \& Tamburini, S. (2009). Coord. Chem. Rev. 253, 1099-1201.
Watson, W. H. \& Holley, W. W. (1984). Croat. Chem. Acta, 57, 467-476.

